d_oi1lhd ool
Khalifa University

Day 3 &4

DIRECTIONS-How to Create a ROS Workspace

O pe nu p a hew te rm i na I Wi n d ow snaillab@snaillab-System-Product-Name: ~/catkin_ws

snaillab@snaillab-System-Product-Name: ~/catkin_ws 80x24

snaillab@snaillab-System-Product-Name:~$ mkdir -p ~/catkin_ws/src

mkdir -pP "‘/catkin_ws/src snaillab@snaillab-System-Product-Name:~$ cd ~/catkin_ws/
~ . snaillab@snaillab-System-Product-Name:~/catkin_ws$ catkin_make
cd /catkln_ws/ Base path: /home/snaillab/catkin_ws
. Source space: /home/snaillab/catkin_ws/src
Catkm—make Build space: /home/snaillab/catkin_ws/build

Devel space: /home/snaillab/catkin_ws/devel

Type the dir Command, and you Wi].]. see three folders Install space: /home/snaillab/catkin_ws/install

HtHH
inside Of this directory: bUild, deve]_, and SIC. #i## Running command: "make cmake_check_build_system" in "/home/snaillab/catkin_
ws/build"
o 5 HitHH
snaillab@snaillab-System-Product-Name:~/catkin_ws$ dir HitH
build devel src #### Running command: "make -j16 -116" in "/home/snaillab/catkin_ws/build"
snaillab@snaillab-System-Product-Name:~/catkin_ws$ SJj HHtHH
'Wmm

e - - [0%] Built target std _msgs_generate_messages_lisp

r N/l D1+ +arant AnAamatrecir menr AnnAarataA macecaanc 1aen

Now we need to source the setup.bash file. This file sets
the path of the workspace so that packages and code
inside the workspace can be found.

snaillab@snaillab-System-Product-Name:~/catkin_ws$ source devel/setup.bash
snaillab@snaillab-System-Product-Name:~/catkin_ws$
snaillab@snaillab-System-Product-Name:~/catkin_ws$ echo SROS_PACKAGE_PATH
/home/snaillab/catkin_ws/src:/opt/ros/noetic/share
snaillab@snaillab-System-Product-Name:~/catkin_ws$ |]

DIRECTIONS-How to Create a ROS Workspace

Open up a new terminal window

So we don’t have to source the setup.bash file every time we open a new Linux terminal, let’s add the
~/[catkin_ ws/devel/setup.bash command to the .bashrc file. Open a new Linux terminal window.

Type the following command to edit the .bashrc text
flle U8 # enable programmable completion Teatures (you don t need to enable
. 109 # this, if it's already enabled in /etc/bash.bashrc and /etc/-
. profile
gedlt /-baShrC 110 # sources /etc/bash.bashrc).
111if ! shopt -oq posix; then
. . 2 P 112 if [-f /usr/share/bash-completion/bash completion]; then

Add thlS llne to the end Of the -baShrC flle- 113 . /usr/share/bash-completion/bash completion
114 elif [-f /etc/bash completion]; then
115 . /etc/bash_completion

source ~/catkin_ws/devel/setup.bash e

118
119
120 source /opt/ros/noetic/setup.bash
121 source ~/catkin ws/devel/setup.bash
122 export TURTLEBOT3 MODEL=burger
123 #export SVGA VGPU10=0
124
125 source /opt/ros/noetic/setup.bash
126 source /opt/ros/noetic/setup.bash|
127 source ~/catkin ws/devel/setup.bash
128
129
130
131

sh v Tabwidth:8 ~ Ln 126, Col 34 7 INS

~— =

DIRECTIONS-How to Launch Gazebo in Ubuntu

Gazebo is a 3D simulator that is a really good tool if you want to simulate your robot in a complex outdoor
or indoor environment.

To launch Gazebo for the first time, open up a new terminal window, and type the following command.

snaillab@snaillab-System-Product-Name: ~
H snaillab@snaillab-System-Product-Name: ~ 80x24
snaillab@snaillab-System-Product-Name:~$ ga
gamemoded gammadscanimage gatttool gazebo-11.10.2
gamemoderun gapplication gazebo
snaillab@snaillab-System-Product-Name:~$ gazebo

DIRECTIONS-How to Launch Rviz and RQT in ROS

ROS also has some really cool graphical user interface (GUI) tools that enable you to interact with ROS
in a more visual way than we have done so far.

Two of these tools are rviz and rqt.

-rviz is a 3D visualizer for ROS

-rqgt is a ROS visualization tool based on Qt, a free and open-source widget toolkit for creating GUIs.

http://wiki.ros.org/rviz
http://wiki.ros.org/rqt
https://en.wikipedia.org/wiki/Qt_(software)

DIRECTIONS-How to Launch Rviz

To launch rviz, open a new
terminal window and type:

=2 roscore http://snaillab-System-Product-Name:11311/ 67x24

snaillab@snaillab-System-Product-Name:~$ roscore
logging to /home/snaillab/.ros/log/b13be7a8-07d7-11ed-9ffe-e3ba

661c35df/roslaunch-snaillab~System-Product-Name-157316.log

Checking log directory for disk usage. This may take a while.

Press Ctrl-C to interrupt

Done checking log file disk usage. Usage is <1GB.

started roslaunch server http://snaillab-System-Product-Name:42029/
ros_comm version 1.15.14

SUMMARY

PARAMETERS
* [rosdistro: noetic
* [rosversion: 1.15.14

NODES
auto-starting new master

process[master]: started with pid [157324]
ROS_MASTER_URI=http://snaillab-System-Product-Name:11311/

. LRI P -

snaillab@snaillab-System-Product-Name: ~

Open up a new terminal tab
and type:

snaillab@snaillab-System-Product-Name:

~ 68x24

snalllab@snalllab System-Product-Name:~$ rosrun rviz rviz

[INFO] [1658285865.
[INFO] [1658285865.
[INFO] [1658285865.

(Ghadamon)

[INFO] [1658285865.
[INFO] [1658285865.
[INFO] [1658285865.

80 Ti/PCIe/SSE2

i INFO] [1658285865.

185244058]:
185297769]:
185311221]:

191334091]:
600963455]:
601013519]:

601061422]:

rviz version 1.14.14
compiled against Qt version 5.12.8
compiled against OGRE version 1.9.0

Forcing OpenGl version 0.
Stereo is NOT SUPPORTED
OpenGL device: NVIDIA GeForce RTX 20

OpenGl version: 4.6 (GLSL 4.6).

RViz

File Panels Help

fyinteract | *Move Camera [_Iselect

D pisplays o]
~ & Global Options

Fixed Frame

Background Color -43 48;48

Frame Rate 30

@-FocusCamera ==Measure . 2DPoseEstimate 7 2DNavGoal @ Publish Point

No TF data
v

Add

(O Time

ROS Time: 1658285933.88 ROS Elapsed: 68.06

Wall Time: |1658285933.92

Wall Elapsed: 68.06

Reset | Left-Click: Rotate. Middle-Click: Move X/Y. Right-Click/Mouse Wheel:: Zoom. Shift: More options.

&+

@

»® Views

Type: | Orbit (rviz)

.4 Zero

~ Current View orblt (rviz)

Near Clip ...
Invert Z Axis
Target Fra...

<Fixed Frame>

Distance 14.216
Focal Shap... 0.05

Focal Shap... V.

Yaw 0.785398
Pitch 0.785398

Field of Vi...

» Focal Point 0;0;

Save Remove

0.785398

o

Rename
[
Experimental

31fps

©

DIRECTIONS-How to Launch RQT

Open up a new terminal tab
and type:

To launch rqt, open a new
terminal window and type:

snaillab@snaillab-System-Product-Name: ~
H snaillab@snaillab-System-Product-Name: ~ 68x24
snaillab@snaillab-System-Product-Name:~$ rosrun rqt_gui rqt_gui |

=] roscore http://snaillab-System-Product-Name:11311/ 67x24
snaillab@snaillab-System-Product-Name:~$ roscore
... logging to /home/snaillab/.ros/log/6048cfcc-07d8-11ed-9ffe-e3ba
661c35df /roslaunch-snaillab-System-Product-Name-157610.1log

Checking log directory for disk usage. This may take a while.

Press Ctrl-C to interrupt

Done checking log file disk usage. Usage is <1GB.

started roslaunch server http://snaillab-System-Product-Name:46413/
ros_comm version 1.15.14

SUMMARY I

PARAMETERS
* [rosdistro: noetic
* [rosversion: 1.15.14

NODES

auto-starting new master
process[master]: started with pid [157618]
ROS_MASTER_URI=http://snaillab-System-Product-Name:11311/

—mam P P .Y) PRy

Default - rqt

File Plugins Running Perspectives Help

|
e=MatPlot DOCO - Od

Topic|/ =~ v autoscroll | [l | @

Aa€E> Q=B

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

list of available Plugins by going to the
Plugins option. Let’s go to Plugins ->
Visualization -> Plot to get a blank plot.

DIRECTIONS- Launch the Turtlesim Robot Simulation in ROS

In this section, we will work with the turtlesim application. This application comes pre-installed with
ROS and consists of a 2D simulation of a turtle. You can move the turtle around and do a lot of other cool
stuff as described here at the turtlesim ROS Wiki page.

Let’s run this program now with rospy, the Python library for ROS.

Let’s launch turtlesim now. Open up a new terminal Open a new terminal tab, and launch
window, and type: the turtlesim application.

snaillab@snaillab-System-Product-Name: ~

[=2] roscore http://snaillab-System-Product-Name:11311/ 57x24 aillab@snaillab-System-Product-Name: ~ 78x24

snaillab@snaillab-System-Product-Name:~$ roscore snalllab@snalllab -System- Product Name ~§ rosrun turt1e51m turtlesim_node
logging to /home/snaillab/.ros/log/5cfadelc-07da-11ed| [INFO] [1658286998.554232719]: Starting turtlesim with node name /turtlesim

-9ffe-e3ba661c35df/roslaunch-snalllab-System-Product-Name [INFO] [1658286998.557025036]: Spawning turtle [turtlel] at x=[5.544445], y=[

-158336. log 5.544445], theta=[0.000000]

Checking log directory for disk usage. This may take a whi]}

ile.

Press Ctrl-C to interrupt

Done checking log file disk usage. Usage is <1GB.

started roslaunch server http://snaillab-System-Product-N
ame:37555/
ros_comm version 1.15.14

SUMMARY

PARAMETERS
* [rosdistro: noetic
* [rosversion: 1.15.14

NODES

auto-starting new master

http://wiki.ros.org/turtlesim

DIRECTIONS- Launch the Turtlesim Robot Simulation in ROS

Let’s see the list of topics. Remember that a topic in ROS is a named bus (or channel) over which a node
publishes messages for other nodes to receive.

Open up a new terminal window, and type:

" snaillab@snaillab- System -Product-Name: ~ 76x17
snalllab@snalllab -System-Product-Name:~$ rosrun turtlesim turtlesim_node

snaillab@snaillab-System-Product-Name: ~ 59x17

sna111ab@sna1113b System-Product-Name:~$ rostopic list
[INFO] [1658287119.923459220]: Starting turtlesim with node name /turtlesim /rosout

[INFO] [1658287119.926371534]: Spawning turtle [turtlel] at x=[5.544445], y |} /rosout_agg
=[5.544445], theta=[0.000000] /turtlel/cmd_vel

/turtle1/color_sensor
/turtlel/pose
snaillab@snaillab-System-Product-Name:~$ ||

ROS nodes communicate with each other is the ROS Topics model, in which a Publisher Node sends
messages via a Topic to one or more registered Subscriber nodes.

DIRECTIONS- Launch the Turtlesim Robot Simulation in ROS

- snalllab@snalllab System -Product-Name: ~ 76x17 snaillab@snaillab-System-Product-Name: ~ 59x17
snaxllab@snalllab -System-Product-Name:~$ rosrun turtlesim turtlesim_node snaxllab@snatllab -System-Product-Name: ~$ rostopic list
[INFO] [1658287119.923459220]: Starting turtlesim with node name /turtlesim /rosout
[INFO] [1658287119.926371534]: Spawning turtle [turtlel] at x=[5.544445], y |} /rosout_agg
=[5.544445], theta=[0.000000] /turtlel/cmd_vel

/turtlel/color_sensor
/turtlel/pose
snaillab@snaillab-System-Product-Name:~$ ||

ROS nodes communicate with each other is the ROS
Topics model, in which a Publisher Node sends
messages via a Topic to one or more registered
Subscriber nodes.

ROS Master

Registration

Registration

Notice that the flow of information between nodes is
one-way, from Publisher to Subscriber.

Publisher
Node

Subscriber
Node

Topic

Message

Subscriber
Node

DIRECTIONS- Launch the Turtlesim Robot Simulation in ROS

Notice that the flow of information between nodes is one-way, from Publisher to Subscriber.

What do we do in a situation where we have a node

that wants to request information from another node
and receive an immediate reply?

ROS Master

Registration

Registration How is this two-way communication implemented
in ROS?

Publisher Subscriber

Node

Topic

Node/ Message

Request/reply in ROS is performed via ROS Services.

Subscriber

Qde/

http://wiki.ros.org/Services

DIRECTIONS- Launch the Turtlesim Robot Simulation in ROS

How is this two-way communication implemented in ROS?

< A ROS Service consists of a pair of messages: one
for the request and one for the reply.

. . 7. . . ROS Master
< A service-providing ROS node (i.e. Service Server)

offers a service (e.g. read sensor data).
< A client node (i.e. Service Client) calls the service Rogsration
by sending a request message to the service
provider.

Registration

request

Node
(Service
Server)

Node
(Service
Client)

< The client node then awaits the reply. Here is what
the ROS Service model

reply

DIRECTIONS- Launch the Turtlesim Robot Simulation in ROS

How is this two-way communication implemented in ROS?

B snaillab@snaillab-Sy roduct-Name: ~ 76x2
snaillab@snaillab-System-Product-Name:~$ rosrun turtlesim turtlesim_node

[INFO] [1658287119.926371534]: Spawning turtle [turtlel] at x=[5.544445]7,
F

snaillab illab-Sy roduct-Name: ~ 76x13
snaillab@snaillab-System-Product-Name:~$ rosparam list
/rosdistro
/roslaunch/uris/host_snaillab_system_product_name__ 37555
/rosversion
/run_id
/turtlesim/background_b
/turtlesim/background_g
/turtlesim/background_r
snaillab@snaillab-System-Product-Name:~$ D

snatllab@snaxllab System Product Name ~$ rosservice list
[INFO] [1658287119.923459220]: Starting turtlesim with node name /turtlesiml/clear

y /kill

/reset

/rosout/get_loggers
/rosout/set_logger_level
/spawn

/turtlel/set_pen
/turtlel/teleport_absolute
/turtlel/teleport_relative
/turtlesim/get_loggers
/turtlesim/set_logger_level
snaillab@snaillab-System-Product-Name:~$ ||

ROS Master

Registration Registration

request

Node
(Service
Client)

reply

DIRECTIONS- Launch the Turtlesim Robot Simulation in ROS

Let’s see a list of ROS parameters. Think of parameters as the global settings for our current ROS environment (e.g.
things like the background color of the turtlesim screen, version of ROS we are using, etc.).

R snaillab@snaillab-System-Product-Name: ~ 76x2 snaillab@ - 9
snaillab@snaillab-System-Product-Name:~$ rosrun turtlesim turtlesim_node snalllab@snalllab -System- PrOdUCt Name ~$ rosservice list
[INFO] [1658287119.923459220]: Starting turtlesim with node name /turtlesim /clear
[INFO] [1658287119.9263715341: Spawning turtle [turtlel] at x=[5.5444451, y /kill

R snaillab@snaillab-System-Product-Name: ~ 76x13 / reset
snaillab@snaillab-System-Product-Name:~$ rosparam list /rosout/get_loggers
/rosdistro /rosout/set_logger_level
/roslaunch/uris/host_snaillab_system product_name_ 37555 /spawn

/rosvgrsion /turtlel/set_pen

/run_id /turtlel/teleport_absolute
[turtlesim/background_b /turtlel/teleport_relative
/turtlesim/background_g /turtlesim/get_loggers
/turtlesim/background_r /turtlesim/set_logger_level

snaillab@snaillab-System-Product-Name:~$ [] snaillab@snaillab-System-Product-Name:~$ |

DIRECTIONS- Launch the Turtlesim Robot Simulation in ROS

open up a new terminal tab and type this command

:snaillab@shaillsb-SysEem-Product-Name:~$ rosrun turtlesim turtle_teleop_key))
Reading from keyboard snaillab@snaillab-System-Product-Name: ~

"""""""""""""" B roscore http://snaillab-System-Product-Name:11311/ 51x5 B snaillab@snaillab-System-Product-Name: ~ 40x5

snaillab@snaillab-System-Product-Name:~$ roscore iven for shutdown: turtlesim] Reason:
logging to /home/snaillab/.ros/log/5cfadelc-07d TurtleSim

a-11ed-9ffe-e3ba661c35df/roslaunch-snaillab-System-

Product-Name-158336. log

Checking log directory for disk usage. This may tak

Use arrow keys to move the turtle. 'q' to quit.

e a while.

B snaillab@snaillab-System-Product-Name: ~ 51x2
E }1 . I snaillab@snaillab-System-Product-Name:~$ rosrun tur

acn time you press an arrow Key, tlesim turtlesim_node

the teleop_turtle node publishes a [INFOL 11658287119.9234592201: Starting turtlesin
message tE the /turtlel/cmd_vel él_’/(s)géaunch/urls/host snaillab_system product_name
topic. turtlesim node is subscribed Jrosversion
to that topic. It receives the Jtur ELesin/background_b
message and moves the turtle. /turtlesim/background g

/turtlesim/background_r
snaillab@snaillab-System-Product-Name:~$ rosrun tur
tlesim turtle_teleop_key

Reading from keyboard

Use arrow keys to move the turtle. 'q' to quit.

DIRECTIONS- Launch the Turtlesim Robot Simulation in ROS

open up a new terminal tab and type this command

snaillab@snaillab-System-Product-Name:~$ rosnode list
/rosout

/teleop_turtle

/turtlesim

snaillab@snaillab-System-Product-Name:~$ |

Registration

Registration

teleop_turtle
(Publisher Node)

turtlesim
(Subscriber Node)

Topic:
[turtiel/cmd_vel
Arrow key
command

DIRECTIONS- Launch the Turtlesim Robot Simulation in ROS

Exercise: Now draw a square with turtlesim.

Press Ctrl+C to stop the simulation. Close all terminal windows and start a new terminal window. Type:

DIRECTIONS- Launch the Turtlesim Robot Simulation in ROS

Exercise: Now draw a square with turtlesim.

Press Ctrl+C to stop the simulation. Close all terminal windows and start a new terminal window. Type:

roscore
rosrun turtlesim turtlesim_node

rosrun turtlesim draw_square

The robot will go around and around along a square-
shaped path.

To reset the simulator, type:

rosservice call /reset

Then type:

rosrun turtlesim draw_square

DIRECTIONS- Create a Hello World Project in ROS

- In this project is to get two pieces of ROS software (called nodes) to talk to each other. You

can think of nodes as small single-purpose programs within a larger robotic system.

« One way nodes communicate with each other is by using messages. These messages are
passed via channels called topics.

* Nodes that send data are known as publisher nodes, and nodes that receive data are known as subscriber
nodes.

* The node that keeps track (i.e. a register) of which nodes are publisher nodes and which nodes are subscriber
nodes is called the ROS Master.

* Without the ROS Master, nodes would not be able to communicate with each other.

http://wiki.ros.org/Nodes
http://wiki.ros.org/Messages
http://wiki.ros.org/Topics

DIRECTIONS- Create a Hello World Project in ROS

 Nodes that are interested in a particular piece of data subscribe to the relevant topic; nodes that generate
data publish to the relevant topic.
* There can be multiple publishers and subscribers to a topic.

* You can think of topics like a middle man between publishers (nodes that generate data) and subscribers

(nodes that receive data).

 The communication is anonymous, so nodes do not know what nodes they are sending data to/receiving data

from.

DIRECTIONS- Create a Hello World Project in ROS

ROS Master

Registration

Registration

Subscriber
Node

Publisher
Node

Topic ——»
Message
(i.e. data)

DIRECTIONS- Create a Hello World Project in ROS

A good analogy

« Think of YouTube (or even other social media sites like Twitter or Instagram).

« YouTubers (publisher nodes) publish videos (messages) to a channel (topic), and you

(subscriber node) can subscribe to that channel (topic) so that you receive all the videos

(messages) on that channel (topic).

- YouTube (ROS Master) keeps track of who is a publisher and who is a subscriber.
+ One thing to keep in mind is that (in contrast to YouTube) in ROS there can be multiple

publishers to the same topic, and publishers and subscribers don’t know each other.

https://www.youtube.com/

DIRECTIONS- Create a Hello World Project in ROS

Develop an application that consists of two nodes: talker and listener.

- The talker node will publish a “Hello World” message to the /chatter topic.

- The listener will subscribe to the /chatter topic so that it can receive the “Hello World”

message..

ROS Master

Registration

Registration

talker
(Publisher
Node)

listener
(Subscriber
Node)

Topic: /chatter —
“Hello World”

DIRECTIONS- Create a Hello World Project in ROS

To launch ROS, open a new Linux terminal window and type the following command:

snaillab@snaillab-System-Product-Name: ~

B roscore http://snaillab-System-Product-Name:11311/ 77x11 snaillab@snaillab-System-Product-Name: ~ 79x24
snalllab@snatllab -System-Product-Name:~$ rosrun roscpp_tutorials talker [
NODES

auto-starting new master
process[master]: started with pid [162920]
ROS_MASTER_URI=http://snaillab-System-Product-Name:11311/

setting /run_id to 65764512-07e5-11ed-9ffe-e3ba661c35df

process[rosoGt-i]; started with pid [162930] Open up a new terminal WindOW, and start
ﬁtarted core service [/rosout] 'tl](g tzill{(}{'l]()(i(},

R snaillab@snaillab-System-Product-Name: ~ 77x11
snaillab@snaillab-System-Product-Name:~$ rostopic list
/chatter

/rosout

/rosout_agg

snaillab@snaillab-System-Product-Name:~$ D

DIRECTIONS- Create a Hello World Project in ROS

You should see hello world messages repeatedly printing to the screen.

snaillab@snaillab-System-Product-Name: ~

B roscore http://snaillab-System-Product-Name:11311/ 77x11 snaillab@snaillab-System-Product-Name: ~ 79x24
INFO] [1658291931.222619038]: hello world 49
INFO] [1658291931.322627831]: hello world 50
INFO] [1658291931.422622438]: hello world 51
INFO] [1658291931.522631923]: hello world 52
INFO] [1658291931.622542691]: hello world 53
INFO] [1658291931.722627031]: hello world 54
INFO] [1658291931.822636693]: hello world 55
INFO] [1658291931.922629852]: hello world 56
INFO] [1658291932.022623506]: hello world 57
INFO] [1658291932.122629026]: hello world 58
INFO] [1658291932.222630594]: hello world 59
INFO] [1658291932.322633000]: hello world 60

NODES

auto-starting new master
process[master]: started with pid [162920]
ROS_MASTER_URI=http://snaillab-System-Product-Name:11311/

setting /run_id to 65764512-07e5-11ed-9ffe-e3ba661c35df
process[rosout-1]: started with pid [162930]
started core service [/rosout]

B snaillab@snaillab-System-Product-Name: ~ 77x11

snaillab@snaillab-System-Product-Name:~$ rostopic list INFO] [1658291932.422629623]: hello world 61
/chatter INFO] [1658291932.522641627]: hello world 62
/rosout INFO] [1658291932.622540254]: hello world 63

INFO] [1658291932.722633023]: hello world 64
INFO] [1658291932.822633968]: hello world 65
INFO] [1658291932.922633345]: hello world 66
INFO] [1658291933.022625775]: hello world 67
INFO] [1658291933.122628343]: hello world 68
INFO] [1658291933.222627917]: hello world 69
INFO] [1658291933.322632268]: hello world 70
i INFO] [1658291933.422624061]: hello world 71

/rosout_agg
snaillab@snaillab-System-Product-Name:~$ [

~r~~relrsrseere s e e e e e e e e e e e e e e e e gl

Use this command on a new terminal tab (File -> New Tab) to see a list of current active topics.

DIRECTIONS- Create a Hello World Project in ROS

snaillab@snaillab-System-Product-Name: ~

snaillab@snaillab-System-Product-Name: ~ 95x24
snatllab@snalllab -System-Product-Name:~$ roslaunch roscpp_tutorials talker_listener.launch

logging to /home/snaillab/.ros/log/65764512-07e5-11ed-9ffe-e3ba661c35df/roslaunch-snaillab-
System-Product-Name-163704.log
Checking log directory for disk usage. This may take a while.
Press Ctrl-C to interrupt
Done checking log file disk usage. Usage is <1GB.

started roslaunch server http://snaillab-System-Product-Name:35315/

let’s start the listener node. The listener node will subscribe to the /chatter topic so that
it can receive the hello world messages published by talker.

rosrun roscpp_tutorials listener

DIRECTIONS- Create a Hello World Project in ROS

snaillab@snaillab-System-Product-Name: ~

roslaunch roscpp_tutorials talker_listener.launch

(s Lo Vo Vs Vs W W s s U D T Vs Vs Vs U W W s D D D L e W

INFO]
INFO]
INFO]
INFO]
INFO]
INFO]
INFO]
INFO]
INFO]
INFO]
INFO]
INFO]
INFO]
INFO]
INFO]
INFO]
INFO]
INFO]
INFO]
INFO]
INFO]
INFO]
INFO]
INFO]

[1658292083.
[1658292083.
[1658292083.
[1658292083.
[1658292083.
[1658292083.
[1658292083.
[1658292084.
[1658292084.
[1658292084.
[1658292084.
[1658292084.
[1658292084.
[1658292084.
[1658292084.
[1658292084.
[1658292084.
[1658292084.
[1658292084.
[1658292084.
[1658292084.
[1658292084.
[1658292084.
[1658292084.

679889261]:
779887618]:
780536910] :
879896438]:
880402522]:
979887509] :
980307400] :
079881265]:
080264849] :
179877712]:
1802878471 :
2798790707 :
280266344]:
379877252]:
380272439]:
479870402]:
480012732]:
5798751507 :
5802180447 :
679872510]:
680003126]
779872689]:
780277867]:
879887482]:

snaillab@snaillab-System-Product-Name: ~ 95x24

hello world 2
hello world 3

I heard: [hello
hello world 4

I heard: [hello
hello world 5

I heard: [hello
hello world 6

I heard: [hello
hello world 7

I heard: [hello
hello world 8

I heard: [hello
hello world 9

I heard: [hello
hello world 10
I heard: [hello
hello world 11
I heard: [hello
hello world 12
I heard: [hello
hello world 13
I heard: [hello
hello world 14

world
world
world
world
world
world
world
world
world
world

world

3]
4]
5]
6]
7]
8]
9]
10]
11]
12]

13]

DIRECTIONS- How to Visualize Nodes Using the RQt GUI Tool

@ker_n@ J cnaue@ener_n@

The rgt tool in ROS enables us to visualize the node connections while a launch file is running

https://automaticaddison.com/how-to-visualize-nodes-using-the-rqt-gui-tool/
http://wiki.ros.org/rqt_graph

DIRECTIONS- How to Visualize Nodes Using the RQt GUI Tool

Type:
roslaunch hello_world talker_listener.launch You can see that the listener node is
subscribed to the /chatter topic. The
Then in a new terminal window, type: talker_node is publishing to the
/chatter topic. You might also see
another node called /rosout
rqt_graph

@ker_n@ ! Chane‘@ner_n@

https://automaticaddison.com/how-to-visualize-nodes-using-the-rqt-gui-tool/

DIRECTIONS- Working With rosbags in ROS Noetic

We'll learn the basics of rosbag. rosbag is a tool that enables you to record messages that are published to

a ROS topic. You can also replay the messages you recorded using rosbag.

The primary use cases for rosbags are testing and troubleshooting your robotics applications as well as

developing new functionality.

how to record and replay messages using rosbags

Most Common rosbag Commands

The main component of rosbags is the bag file. A bag file is a formatted file that contains timestamped

ROS messages.
The syntax for creating a bag file is as follows:

https://automaticaddison.com/working-with-rosbags-in-ros-noetic/

DIRECTIONS- Working With rosbags in ROS Noetic

The main component of rosbags is the bag file. A bag file is a formatted file that contains timestamped
ROS messages.

The syntax for creating a bag file is as follows:

rosbag record -O filename.bag topic-names

For example, if you want to record messages that are published to
the /turtle1/cmd_ vel and /turtle1/pose topics, you would type this command:

rosbag record -O filename.bag /turtlel/cmd_vel /turtlel/pose

If you want to record the messages of all published topics that are currently active, you would use the
following command:

rosbag record -a

https://automaticaddison.com/working-with-rosbags-in-ros-noetic/

DIRECTIONS- Working With rosbags in ROS Noetic

Example: how to record and replay messages using rosbags.

Open a new terminal window, and launch ROS.

roscore

In another terminal tab, type the following command to launch the turtle simulation:

rosrun turtlesim turtlesim_node

In another terminal tab, type the following command to get a turtle to repeatedly move in a square-
shaped pattern:

rosrun turtlesim draw_square

https://automaticaddison.com/working-with-rosbags-in-ros-noetic/

DIRECTIONS- Working With rosbags in ROS Noetic

Open another terminal tab, and check out the topics that are currently active:

rostopic list -v

Let’s record the messages that are publishing to the /turtlel/cmd_vel and /turtlel/pose topics. We'll store these
messages in a bag file.

In a new terminal tab, create a new folder:

mkdir ~/bagfiles

Move inside the directory you just created.

cd ~/bagfiles

https://automaticaddison.com/working-with-rosbags-in-ros-noetic/

DIRECTIONS- Working With rosbags in ROS Noetic

Start recording.

rosbag record -O turtle square_sim.bag /turtlel/cmd_vel /turtlel/pose

Go back to the terminal where you launched the draw_square node (don’t shutdown turtlesim or the ROS Master
though).
Press CTRL + C to get the turtle to stop drawing. And In a new terminal tab, type:

cd ~/bagfiles

rosbag play turtle_square sim.bag

https://automaticaddison.com/working-with-rosbags-in-ros-noetic/

DIRECTIONS- How to Launch the TurtleBot3 Simulation With ROS

In this tutorial, we will launch a virtual robot called TurtleBot3. TurtleBot3 is a low-cost, personal
robot kit with open-source software.

http://wiki.ros.org/Robots/TurtleBot

SLAM (Simultaneous localization and mapping) and autonomous navigation.

TurtleBot3 is designed to run using just ROS and Ubuntu. It is a popular robot for research and
educational purposes.

Reference
https://emanual.robotis.com/docs/en/platform/turtlebot3/simulation/#gazebo-simulation

http://wiki.ros.org/Robots/TurtleBot

DIRECTIONS- How to Launch the TurtleBot3 Simulation With ROS

Open a terminal window and install the dependent packages. Enter the following commands, one right

after the other:

cd ~/catkin_ws/src/

git clone https://github.com/ROBOTIS-
GIT/turtlebot3_msgs.git

git clone https://github.com/ROBOTIS-
GIT/turtlebot3.git

cd ~/catkin_ws && catkin_make

TurtleBot3 has three models, Burger, Waffle, and
Waffle Pi, so you have to set which model you want to
use before you launch TurtleBot3. Type this
command to open the bashrc file to add this setting:

gedit ~/.bashrc

http://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
http://emanual.robotis.com/docs/en/platform/turtlebot3/export_turtlebot3_model/

DIRECTIONS- How to Launch the TurtleBot3 Simulation With ROS

Add this line at the bottom of the file: Save the file and close it.

some more ls aliases

aliss 1i='ls ~alF* Now, we need to download the
11 la='1ls -A' . . .
i T B TurtleBot3 simulation files.

Add an "alert" alias for long running commands. Use like so:
sleep 10; alert
alias alert="notify-send --urgency=low -1 "S([$? = 0] && echo terminal

Alias definitions. cd ~/catkin_ws/src/
You may want to put all your additions into a separate file like

~/.bash_aliases, instead of adding them here directly.

See Jusr/share/doc/bash-doc/examples in the bash-doc package.

Lf [-f ~/.bash_aliases]; then git clone https://github.com/ROBOTIS-

. ~/.bash_aliases
™ GIT/turtlebot3_simulations.git

enable programmable completion features (you don't need to enable
this, if it's already enabled in /etc/bash.bashrc and /etc/profile
sources /etc/bash.bashrc).
if ! shopt -oq posix; then
if [-f Jusr/share/bash-completion/bash_completion]; then . .
. Jusr/share/bash-completion/bash_completion cd ~/catk1n_ws && Catkln_make
elif [-f Jetc/bash_completion]; then
. Jetc/bash_completion
fi
fi
source Jopt/ros/melodic/setup.bash

source ~/catkin_ws/devel/setup.bash
export TURTLEBOT3_MODEL=burger]

DIRECTIONS- Simulate TurtleBot3 Using RViz

let’s launch the virtual robot using RViz. Type this command in your
terminal window:

roslaunch turtlebot3_fake turtlebot3_fake.launch

If you want to move TurtleBot3 around the screen, open a new terminal
window, and type the following command (everything on one line in the
terminal):

roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

roslaunch is the command in ROS that enables us to launch a program. The
syntax is as follows:

roslaunch <name_of_package> <name_of_launch_file>

DIRECTIONS- How to Launch the TurtleBot3 Simulation With ROS

What is a Package?

ROS packages are the way software is organized in ROS. They are the

smallest thing you can build in ROS.

A package is a directory that contains all of the files, programs, libraries, and datasets needed to provide
some useful functionality. ROS packages promote software reuse. Every program that you write in ROS
will need to be inside a package.

The goal of a ROS package is to be large enough to be useful but not so large and complicated that
nobody wants to reuse it for their own project.

ROS packages are organized as follows:

-Jaunch folder: Contains launch files

-src folder: Contains the source code (C++, Python)

-CMakelLists.txt: List of cmake rules for compilation

-package.xml: Package information and dependencies

https://en.wikipedia.org/wiki/CMake

DIRECTIONS- How to Launch the TurtleBot3 Simulation With ROS

ROS package from a terminal window, the syntax is
as follows:

roscd <name_of_package>

For example, to go to the turtlebot3_ teleop package,
type in a new terminal window:

roscd turtlebot3_teleop

you can see what is inside there:

1s

DIRECTIONS- How to Launch the TurtleBot3 Simulation With ROS

What is a Launch File?

From within the turtlebot3_ teleop package, move inside the launch file.
cd launch

Let’s take a look inside it.

gedit turtlebot3_teleop_key.launch

xlaunch>
<arg name="model” default="S(env TURTLEBOT3 MODEL)" doc="model type [burger, waffle, waffle pi]"/>
<param name="model"” value="S$(arg model)"/>

turtlebot3_teleop_key already has its own built in velocity smoother
<node pkg="turtlebot3_teleop” type="turtlebot3_teleop_key" name="turtlebot3_teleop_keyboard" output="screen”>
</node>
</launch>

DIRECTIONS- How to Launch the TurtleBot3 Simulation With ROS

All launch files start off with the <launch> tag and end with the </launch> tag. Inside
these tags, you have the <node> tag that contains the following parameters:
1.pkg="package_name”’: This is the name of the package that has the code we want ROS
to execute.

2.type="python_ file_name.py”: This is the name of the program we’d like to execute.
3.name="node name”: This is the name of the ROS node we want to launch our
program.

L.output="type_of output”: Where you will print the output of the program.

DIRECTIONS- How to Launch the TurtleBot3 Simulation With ROS

Background Color] 255; 255; 255

DIRECTIONS- Simulate TurtleBot3 Using Gazebo

Now let’s use Gazebo to do the TurtleBot3 simulation.
First, let’s launch TurtleBot3 in an empty environment. Type this command (everything goes on one
line):

roslaunch turtlebot3_gazebo turtlebot3_empty_world.launch

DIRECTIONS- How to Change the Simulation Environment for TurtleBot3

This environment is often used for testing SLAM and navigation algorithms. Simultaneous localization

and mapping (SLAM) concerns the problem of a robot building or updating a map of an unknown
environment while simultaneously keeping track its location in that environment.

In a new terminal window type:

roslaunch turtlebot3_gazebo turtlebot3_world.launch

https://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping

DIRECTIONS- How to Change the Simulation Environment for TurtleBot3

TurtleBot3 inside a house. Type this command and
wait a few minutes for the environment to load.

roslaunch turtlebot3_gazebo

turtlebot3_house.launch

To move the TurtleBot with your keyboard, use
this command in another terminal tab:

roslaunch turtlebot3_teleop
turtlebot3_teleop_key.launch

DIRECTIONS- Autonomous Navigation and Obstacle Avoidance With TurtleBot3

let’s implement obstacle avoidance for the TurtleBot3 robot. The goal is to have TurtleBot3
autonomously navigate around a room and avoid colliding into objects.

Open a new terminal and type:

roslaunch turtlebot3_gazebo turtlebot3_world.launch

In another terminal window type:

roslaunch turtlebot3_gazebo turtlebot3_simulation.launch

TurtleBot3 autonomously moving about the world and avoiding obstacles
along the way.

DIRECTIONS- Autonomous Navigation and Obstacle Avoidance With TurtleBot3

We can open RViz to visualize the LaserScan topic while TurtleBot3 is moving
about in the world. In a new terminal tab type:

roslaunch turtlebot3_gazebo turtlebot3_gazebo_rviz.launch

DIRECTIONS- Simulating SLAM With TurtleBot3

how we can simulate SLAM with TurtleBot3. As a refresher, Simultaneous localization and mapping

(SLAM) concerns the problem of a robot building or updating a map of an unknown environment while
simultaneously keeping track its location in that environment.

Install the SLAM module in a new terminal window.

sudo apt install ros-noetic-slam-gmapping

Start Gazebo in a new terminal window.

roslaunch turtlebot3_gazebo turtlebot3_world.launch
Start SLAM in a new terminal tab.

roslaunch turtlebot3_slam turtlebot3_slam.launch
slam_methods:=gmapping

DIRECTIONS- Autonomous Navigation and Obstacle Avoidance With TurtleBot3

Start autonomous navigation in a new terminal tab:

roslaunch turtlebot3_gazebo turtlebot3_simulation.launch

Watch the robot create a map of the environment as it autonomously moves from place to place!

DIRECTIONS- Autonomous Navigation and Obstacle Avoidance With TurtleBot3

Watch the robot create a map of the environment as it autonomously moves from place to place!

Elle Panels felp

amtecact T MoveCamera [lSelest < FocsCamers = Messre 4 2D PoseEstimate 4 20NwGoal @ Publish Pomt * = o

O oisplays 0
+ © Clobal Options

¢ v Clobal Status: Ok
% Crd
* g RobotModel

)

» % Laserscan
r B enage
v P2 map

» v Status: Ok
Topk /map
Alpha o7
Color Scheme map
Draw Behind
Resobution a0s
width 184
Heght 164

» Position 10100

» Orientation a0
Unrelable
Use Timestamp

DIRECTIONS- Autonomous Navigation and Obstacle Avoidance With TurtleBot3

Watch the robot create a map of the environment as it autonomously moves from place to place!

&)m T Mowe Camera | Select & Foous Camera == Measwre .~ 20PoseEstimate 7 20NwvGoal) Publsh Point W, -

v
v
)l
b~ LaserSc v
» & image
F. map v
v’ Status: Ok
Topk fmap
Apha 0.7
Color Scheme map
Draw Behind
Resolution 0.05
Width 384
Height 384
* Position A40; 100
Orientation 0001
Unrelable
Use Timestamp

DIRECTIONS- Autonomous Navigation and Obstacle Avoidance With TurtleBot3

Start autonomous navigation in a new terminal tab:

roslaunch turtlebot3_gazebo turtlebot3_simulation.launch

Watch the robot create a map of the environment as it autonomously moves from place to place!

