
Day 3 & 4

THURSDAY, JULY 21, 2022



DIRECTIONS-How to Create a ROS Workspace
Open up a new terminal window

mkdir -p ~/catkin_ws/src
cd ~/catkin_ws/
catkin_make

Type the dir command, and you will see three folders 
inside of this directory: build, devel, and src.

Now we need to source the setup.bash file. This file sets 
the path of the workspace so that packages and code 
inside the workspace can be found.



DIRECTIONS-How to Create a ROS Workspace
Open up a new terminal window

So we don’t have to source the setup.bash file every time we open a new Linux terminal, let’s add the 
~/catkin_ws/devel/setup.bash command to the .bashrc file. Open a new Linux terminal window.

gedit ~/.bashrc

Type the following command to edit the .bashrc text 
file:

Add this line to the end of the .bashrc file:

source ~/catkin_ws/devel/setup.bash



DIRECTIONS-How to Launch Gazebo in Ubuntu
Gazebo is a 3D simulator that is a really good tool if you want to simulate your robot in a complex outdoor 
or indoor environment.

To launch Gazebo for the first time, open up a new terminal window, and type the following command.



DIRECTIONS-How to Launch Rviz and RQT in ROS

ROS also has some really cool graphical user interface (GUI) tools that enable you to interact with ROS 

in a more visual way than we have done so far. 

Two of these tools are rviz and rqt.

•rviz is a 3D visualizer for ROS

•rqt is a ROS visualization tool based on Qt, a free and open-source widget toolkit for creating GUIs.

http://wiki.ros.org/rviz
http://wiki.ros.org/rqt
https://en.wikipedia.org/wiki/Qt_(software)


DIRECTIONS-How to Launch Rviz

To launch rviz, open a new 
terminal window and type:

Open up a new terminal tab 
and type:



DIRECTIONS-How to Launch RQT

To launch rqt, open a new 
terminal window and type:

Open up a new terminal tab 
and type:

list of available Plugins by going to the 
Plugins option. Let’s go to Plugins -> 
Visualization -> Plot to get a blank plot.



DIRECTIONS- Launch the Turtlesim Robot Simulation in ROS
In this section, we will work with the turtlesim application. This application comes pre-installed with 
ROS and consists of a 2D simulation of a turtle. You can move the turtle around and do a lot of other cool 
stuff as described here at the turtlesim ROS Wiki page.

Let’s run this program now with rospy, the Python library for ROS.
Let’s launch turtlesim now. Open up a new terminal 
window, and type:

Open a new terminal tab, and launch 
the turtlesim application.

http://wiki.ros.org/turtlesim


DIRECTIONS- Launch the Turtlesim Robot Simulation in ROS

Open up a new terminal window, and type:

Let’s see the list of topics. Remember that a topic in ROS is a named bus (or channel) over which a node 
publishes messages for other nodes to receive.

ROS nodes communicate with each other is the ROS Topics model, in which a Publisher Node sends 
messages via a Topic to one or more registered Subscriber nodes.



DIRECTIONS- Launch the Turtlesim Robot Simulation in ROS

ROS nodes communicate with each other is the ROS 
Topics model, in which a Publisher Node sends 
messages via a Topic to one or more registered 
Subscriber nodes.

Notice that the flow of information between nodes is 
one-way, from Publisher to Subscriber.



DIRECTIONS- Launch the Turtlesim Robot Simulation in ROS
Notice that the flow of information between nodes is one-way, from Publisher to Subscriber.

What do we do in a situation where we have a node 
that wants to request information from another node 
and receive an immediate reply? 

How is this two-way communication implemented 
in ROS? 

Request/reply in ROS is performed via ROS Services.

http://wiki.ros.org/Services


DIRECTIONS- Launch the Turtlesim Robot Simulation in ROS
How is this two-way communication implemented in ROS? 

v A ROS Service consists of a pair of messages: one 
for the request and one for the reply. 

v A service-providing ROS node (i.e. Service Server) 
offers a service (e.g. read sensor data). 

v A client node (i.e. Service Client) calls the service 
by sending a request message to the service 
provider. 

v The client node then awaits the reply. Here is what 
the ROS Service model



DIRECTIONS- Launch the Turtlesim Robot Simulation in ROS
How is this two-way communication implemented in ROS? 



DIRECTIONS- Launch the Turtlesim Robot Simulation in ROS
Let’s see a list of ROS parameters. Think of parameters as the global settings for our current ROS environment (e.g. 
things like the background color of the turtlesim screen, version of ROS we are using, etc.).



DIRECTIONS- Launch the Turtlesim Robot Simulation in ROS
open up a new terminal tab and type this command

Each time you press an arrow key, 
the teleop_turtle node publishes a 
message to the /turtle1/cmd_vel
topic. turtlesim node is subscribed 
to that topic. It receives the 
message and moves the turtle.



DIRECTIONS- Launch the Turtlesim Robot Simulation in ROS
open up a new terminal tab and type this command



DIRECTIONS- Launch the Turtlesim Robot Simulation in ROS
Exercise: Now draw a square with turtlesim. 

Press Ctrl+C to stop the simulation. Close all terminal windows and start a new terminal window. Type:



DIRECTIONS- Launch the Turtlesim Robot Simulation in ROS
Exercise: Now draw a square with turtlesim. 

Press Ctrl+C to stop the simulation. Close all terminal windows and start a new terminal window. Type:

The robot will go around and around along a square-
shaped path.



DIRECTIONS- Create a Hello World Project in ROS
• In this project is to get two pieces of ROS software (called nodes) to talk to each other. You 

can think of nodes as small single-purpose programs within a larger robotic system. 

• One way nodes communicate with each other is by usingmessages. These messages are 

passed via channels called topics.

• Nodes that send data are known as publisher nodes, and nodes that receive data are known as subscriber 

nodes.

• The node that keeps track (i.e. a register) of which nodes are publisher nodes and which nodes are subscriber 

nodes is called the ROS Master. 

• Without the ROS Master, nodes would not be able to communicate with each other.

http://wiki.ros.org/Nodes
http://wiki.ros.org/Messages
http://wiki.ros.org/Topics


DIRECTIONS- Create a Hello World Project in ROS

• Nodes that are interested in a particular piece of data subscribe to the relevant topic; nodes that generate 

data publish to the relevant topic. 

• There can be multiple publishers and subscribers to a topic. 

• You can think of topics like a middle man between publishers (nodes that generate data) and subscribers 

(nodes that receive data). 

• The communication is anonymous, so nodes do not know what nodes they are sending data to/receiving data 

from.



DIRECTIONS- Create a Hello World Project in ROS



DIRECTIONS- Create a Hello World Project in ROS
A good analogy 

• Think of YouTube (or even other social media sites like Twitter or Instagram). 

• YouTubers (publisher nodes) publish videos (messages) to a channel (topic), and you 

(subscriber node) can subscribe to that channel (topic) so that you receive all the videos 

(messages) on that channel (topic). 

• YouTube (ROS Master) keeps track of who is a publisher and who is a subscriber.

• One thing to keep in mind is that (in contrast to YouTube) in ROS there can be multiple 

publishers to the same topic, and publishers and subscribers don’t know each other.

https://www.youtube.com/


DIRECTIONS- Create a Hello World Project in ROS
Develop an application that consists of two nodes: talker and listener. 

• The talker node will publish a “Hello World” message to the /chatter topic. 

• The listener will subscribe to the /chatter topic so that it can receive the “Hello World” 

message..



DIRECTIONS- Create a Hello World Project in ROS
To launch ROS, open a new Linux terminal window and type the following command:

Open up a new terminal window, and start 
the talker node.



DIRECTIONS- Create a Hello World Project in ROS
You should see hello world messages repeatedly printing to the screen.

Use this command on a new terminal tab (File -> New Tab) to see a list of current active topics.



DIRECTIONS- Create a Hello World Project in ROS

let’s start the listener node. The listener node will subscribe to the /chatter topic so that 
it can receive the hello world messages published by talker.



DIRECTIONS- Create a Hello World Project in ROS



DIRECTIONS- How to Visualize Nodes Using the RQt GUI Tool

The rqt tool in ROS enables us to visualize the node connections while a launch file is running

https://automaticaddison.com/how-to-visualize-nodes-using-the-rqt-gui-tool/
http://wiki.ros.org/rqt_graph


DIRECTIONS- How to Visualize Nodes Using the RQt GUI Tool

You can see that the listener_node is 
subscribed to the /chatter topic. The 
talker_node is publishing to the 
/chatter topic. You might also see 
another node called /rosout

https://automaticaddison.com/how-to-visualize-nodes-using-the-rqt-gui-tool/


DIRECTIONS- Working With rosbags in ROS Noetic

We’ll learn the basics of rosbag. rosbag is a tool that enables you to record messages that are published to 

a ROS topic. You can also replay the messages you recorded using rosbag. 

The primary use cases for rosbags are testing and troubleshooting your robotics applications as well as 

developing new functionality.

how to record and replay messages using rosbags

Most Common rosbag Commands

The main component of rosbags is the bag file. A bag file is a formatted file that contains timestamped 
ROS messages.
The syntax for creating a bag file is as follows:

https://automaticaddison.com/working-with-rosbags-in-ros-noetic/


DIRECTIONS- Working With rosbags in ROS Noetic

The main component of rosbags is the bag file. A bag file is a formatted file that contains timestamped 
ROS messages.
The syntax for creating a bag file is as follows:

rosbag record -O filename.bag topic-names

For example, if you want to record messages that are published to 
the /turtle1/cmd_vel and /turtle1/pose topics, you would type this command:

rosbag record -O filename.bag /turtle1/cmd_vel /turtle1/pose

If you want to record the messages of all published topics that are currently active, you would use the 
following command:

rosbag record -a

https://automaticaddison.com/working-with-rosbags-in-ros-noetic/


DIRECTIONS- Working With rosbags in ROS Noetic

Example: how to record and replay messages using rosbags.

roscore
In another terminal tab, type the following command to launch the turtle simulation:

rosrun turtlesim turtlesim_node

rosrun turtlesim draw_square

Open a new terminal window, and launch ROS.

In another terminal tab, type the following command to get a turtle to repeatedly move in a square-
shaped pattern:

https://automaticaddison.com/working-with-rosbags-in-ros-noetic/


DIRECTIONS- Working With rosbags in ROS Noetic

Open another terminal tab, and check out the topics that are currently active:

rostopic list -v

Let’s record the messages that are publishing to the /turtle1/cmd_vel and /turtle1/pose topics. We’ll store these 
messages in a bag file.

mkdir ~/bagfiles

cd ~/bagfiles

Move inside the directory you just created.

In a new terminal tab, create a new folder:

https://automaticaddison.com/working-with-rosbags-in-ros-noetic/


DIRECTIONS- Working With rosbags in ROS Noetic

Start recording.

rosbag record -O turtle_square_sim.bag /turtle1/cmd_vel /turtle1/pose

Go back to the terminal where you launched the draw_square node (don’t shutdown turtlesim or the ROS Master 
though).

cd ~/bagfiles

rosbag play turtle_square_sim.bag

Press CTRL + C to get the turtle to stop drawing. And In a new terminal tab, type:

https://automaticaddison.com/working-with-rosbags-in-ros-noetic/


DIRECTIONS- How to Launch the TurtleBot3 Simulation With ROS

In this tutorial, we will launch a virtual robot called TurtleBot3. TurtleBot3 is a low-cost, personal 
robot kit with open-source software.

http://wiki.ros.org/Robots/TurtleBot

SLAM (Simultaneous localization and mapping) and autonomous navigation.

TurtleBot3 is designed to run using just ROS and Ubuntu. It is a popular robot for research and 
educational purposes.

https://emanual.robotis.com/docs/en/platform/turtlebot3/simulation/#gazebo-simulation
Reference 

http://wiki.ros.org/Robots/TurtleBot


DIRECTIONS- How to Launch the TurtleBot3 Simulation With ROS

Open a terminal window and install the dependent packages. Enter the following commands, one right 
after the other:

TurtleBot3 has three models, Burger, Waffle, and 
Waffle Pi, so you have to set which model you want to 
use before you launch TurtleBot3. Type this 
command to open the bashrc file to add this setting:

http://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
http://emanual.robotis.com/docs/en/platform/turtlebot3/export_turtlebot3_model/


DIRECTIONS- How to Launch the TurtleBot3 Simulation With ROS

Add this line at the bottom of the file: Save the file and close it.

Now, we need to download the 
TurtleBot3 simulation files.



DIRECTIONS- Simulate TurtleBot3 Using RViz
let’s launch the virtual robot using RViz. Type this command in your 
terminal window:

If you want to move TurtleBot3 around the screen, open a new terminal 
window, and type the following command (everything on one line in the 
terminal):

roslaunch is the command in ROS that enables us to launch a program. The 
syntax is as follows:



DIRECTIONS- How to Launch the TurtleBot3 Simulation With ROS
What is a Package?

ROS packages are the way software is organized in ROS. They are the 
smallest thing you can build in ROS.

A package is a directory that contains all of the files, programs, libraries, and datasets needed to provide 

some useful functionality. ROS packages promote software reuse. Every program that you write in ROS 

will need to be inside a package.

The goal of a ROS package is to be large enough to be useful but not so large and complicated that 

nobody wants to reuse it for their own project.

ROS packages are organized as follows:

•launch folder: Contains launch files

•src folder: Contains the source code (C++, Python)

•CMakeLists.txt: List of cmake rules for compilation

•package.xml: Package information and dependencies

https://en.wikipedia.org/wiki/CMake


DIRECTIONS- How to Launch the TurtleBot3 Simulation With ROS
ROS package from a terminal window, the syntax is 
as follows:

For example, to go to the turtlebot3_teleop package, 
type in a new terminal window:

you can see what is inside there:



DIRECTIONS- How to Launch the TurtleBot3 Simulation With ROS
What is a Launch File?

From within the turtlebot3_teleop package, move inside the launch file.

Let’s take a look inside it.



DIRECTIONS- How to Launch the TurtleBot3 Simulation With ROS

All launch files start off with the <launch> tag and end with the </launch> tag. Inside 

these tags, you have the <node> tag that contains the following parameters:

1.pkg=”package_name”: This is the name of the package that has the code we want ROS 

to execute.

2.type=”python_file_name.py”: This is the name of the program we’d like to execute.

3.name=”node_name”: This is the name of the ROS node we want to launch our 

program.

4.output=”type_of_output”: Where you will print the output of the program.



DIRECTIONS- How to Launch the TurtleBot3 Simulation With ROS



DIRECTIONS- Simulate TurtleBot3 Using Gazebo
Now let’s use Gazebo to do the TurtleBot3 simulation.
First, let’s launch TurtleBot3 in an empty environment. Type this command (everything goes on one 
line):



DIRECTIONS- How to Change the Simulation Environment for TurtleBot3
This environment is often used for testing SLAM and navigation algorithms. Simultaneous localization 
and mapping (SLAM) concerns the problem of a robot building or updating a map of an unknown 
environment while simultaneously keeping track its location in that environment.

In a new terminal window type:

https://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping


DIRECTIONS- How to Change the Simulation Environment for TurtleBot3
TurtleBot3 inside a house. Type this command and 
wait a few minutes for the environment to load.

To move the TurtleBot with your keyboard, use 
this command in another terminal tab:



DIRECTIONS- Autonomous Navigation and Obstacle Avoidance With TurtleBot3
let’s implement obstacle avoidance for the TurtleBot3 robot. The goal is to have TurtleBot3 
autonomously navigate around a room and avoid colliding into objects.

Open a new terminal and type:

In another terminal window type:

TurtleBot3 autonomously moving about the world and avoiding obstacles 
along the way.



DIRECTIONS- Autonomous Navigation and Obstacle Avoidance With TurtleBot3

We can open RViz to visualize the LaserScan topic while TurtleBot3 is moving 
about in the world. In a new terminal tab type:



DIRECTIONS- Simulating SLAM With TurtleBot3
how we can simulate SLAM with TurtleBot3. As a refresher, Simultaneous localization and mapping 
(SLAM) concerns the problem of a robot building or updating a map of an unknown environment while 
simultaneously keeping track its location in that environment.

Install the SLAM module in a new terminal window.

sudo apt install ros-noetic-slam-gmapping

Start Gazebo in a new terminal window.

Start SLAM in a new terminal tab.



DIRECTIONS- Autonomous Navigation and Obstacle Avoidance With TurtleBot3

Start autonomous navigation in a new terminal tab:

Watch the robot create a map of the environment as it autonomously moves from place to place!



DIRECTIONS- Autonomous Navigation and Obstacle Avoidance With TurtleBot3
Watch the robot create a map of the environment as it autonomously moves from place to place!



DIRECTIONS- Autonomous Navigation and Obstacle Avoidance With TurtleBot3
Watch the robot create a map of the environment as it autonomously moves from place to place!



DIRECTIONS- Autonomous Navigation and Obstacle Avoidance With TurtleBot3

Start autonomous navigation in a new terminal tab:

Watch the robot create a map of the environment as it autonomously moves from place to place!


